
xPC Target™ 4
Device Drivers

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.
xPC Target™ Device Drivers Guide
© COPYRIGHT 2007–2009 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History
March 2007 Online only New for Version 3.2 (Release 2007a)
September 2007 Online only Updated for Version 3.3 (Release 2007b)
March 2008 Online only Updated for Version 3.4 (Release 2008a)
October 2008 Online only Updated for Version 4.0 (Release 2008b)
March 2009 Online only Updated for Version 4.1 (Release 2009a)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

Customizing xPC Target Drivers

1
Introduction . 1-2
xPC Target Drivers . 1-2
When to Write Your Own Drivers . 1-3
Restrictions on Customizing xPC Target Drivers 1-3
Expected Background . 1-3
Resources for Customizing xPC Target Drivers 1-4
What Makes Up an xPC Target Driver? 1-6

Before You Start . 1-8
Introduction . 1-8
Driver Types . 1-9
Bus Types and Register Access . 1-9
Register Access . 1-10
Inlining xPC Target Drivers . 1-10

Creating a Custom Driver . 1-11

Debugging Notes . 1-16

PCI Drivers
2

PCI Bus Considerations . 2-2
Introduction . 2-2
PCI Configuration Space API . 2-3
Memory-Mapped Accesses . 2-6
I/O Port Accesses . 2-6

Sample PCI Device Driver . 2-8

iii

ISA and PC/104 Drivers
3

ISA and PC/104 Bus Considerations 3-2
Introduction . 3-2
I/O Mapped . 3-2
Memory Mapped . 3-3

Masking Drivers

4
Creating Driver Subsystem Masks 4-2

Driver Mask Guidelines . 4-3

Cross-Block Checking . 4-5

When You Are Done . 4-6

Sample Driver Mask . 4-7

Interrupt Support

5
xPC Target Interrupts . 5-2
Introduction . 5-2
Interrupt Processing in the xPC Target Environment 5-2

Adding Interrupt Support . 5-7
Introduction . 5-7
Guidelines for Creating Interrupt Functions 5-9
Filling in the Driver board Structure 5-10

Hook Function Prototypes — Alphabetical List 5-15

iv Contents

Custom xPC Target Driver Notes

6
S-Function Guidelines . 6-2

mdlStart and mdlTerminate Considerations 6-4

DMA Considerations . 6-5

Passing Parameters . 6-6

Accessing Registers . 6-7
I/O Space . 6-7
Memory-Mapped Space . 6-7

Creating Custom Drivers Using the xPC Target
Driver Authoring Tool

7
xPC Target Driver Authoring Tool 7-2

Generating Custom Driver Templates 7-4
Using the xPC Target Driver Authoring Tool 7-4
Setting Up Driver Variables . 7-4
Saving the Configuration . 7-7
Reloading the Configuration . 7-8
Creating the C File Template . 7-8
Creating a C MEX File for the Driver 7-8
Customizing the Device Driver Mask 7-9

v

I/O Structures — By Category

8

I/O Structures — Alphabetical List

9

I/O Functions — By Category

10
Port I/O . 10-2

PCI Configuration Information . 10-2

Physical Memory . 10-2

Time . 10-2

Miscellaneous . 10-3

I/O Functions — Alphabetical List

11

vi Contents

1

Customizing xPC Target
Drivers

• “Introduction” on page 1-2

• “Before You Start” on page 1-8

• “Creating a Custom Driver” on page 1-11

• “Debugging Notes” on page 1-16

1 Customizing xPC Target™ Drivers

Introduction

In this section...

“xPC Target Drivers” on page 1-2
“When to Write Your Own Drivers” on page 1-3
“Restrictions on Customizing xPC Target Drivers” on page 1-3
“Expected Background” on page 1-3
“Resources for Customizing xPC Target Drivers” on page 1-4
“What Makes Up an xPC Target Driver?” on page 1-6

xPC Target Drivers
The xPC Target™ software provides device drivers for a variety of third-party
boards. xPC Target users access these drivers as Simulink® blocks from
the xPC Target library (xpclib). If you have a board for which the xPC
Target software does not supply a driver, you can write your own. This guide
provides guidelines for writing custom xPC Target device drivers.

The xPC Target driver library contains drivers that support third-party
boards with many I/O capabilities and applications. This includes drivers for
different types of I/O boards, including

Analog-to-digital
Digital-to-analog
Audio
Counters
Shared memory

There are also drivers that support particular protocols, including

RS-232, RS-422, RS-485
GPIB
CAN
UDP
ARINC 429
MIL-1553

1-2

Introduction

When to Write Your Own Drivers
Consider writing your own device drivers for the xPC Target block library if:

• No xPC Target driver exists for your I/O needs.

• You are unable to use a board that the xPC Target software supports.

• You need to extend the functionality of an existing xPC Target driver.

• The MathWorks xPC Target team will not write a device driver for your
board.

Restrictions on Customizing xPC Target Drivers
The xPC Target software has its own kernel, and you will be writing device
drivers aimed at that kernel. An xPC Target driver is therefore different
from a driver for another environment, such as Microsoft Windows. The xPC
Target kernel is optimized and small, and does not have the operating system
layers that traditional kernels do.

The xPC Target software installs its own kernel on the target PC. This kernel
runs to the exclusion of any other operating system. When writing your
own driver:

• You cannot use a driver DLL that accompanies the I/O board from
the manufacturer. A manufacturer-supplied DLL will have external
dependencies that the xPC Target kernel cannot resolve. The xPC Target
executable will not be able to load the DLL.

• Do not create your own driver DLL.

• If you do not have access to the register programming information, neither
you nor The MathWorks can write a device driver for the board. If you have
access to the source code of an existing driver for the board, you might be
able to port it to the xPC Target kernel.

Expected Background
This guide assumes that you are already knowledgeable about writing device
drivers. It describes the steps specific to writing device drivers for the xPC
Target environment. To write your own device drivers for the xPC Target
system, you need the following background:

1-3

1 Customizing xPC Target™ Drivers

• Good C programming skills

• Knowledge of how Simulink simulation works, for example, the type and
order of calls

• Knowledge of writing S-functions and compiling those functions as C-MEX
functions. This includes a comprehensive knowledge of Simulink callback
methods and the Simulink SimStruct functions.

• Basic knowledge of Real-Time Workshop

• Understanding of I/O hardware. Because of the real-time nature of the
xPC Target software, you must develop drivers with minimal latency.
Most drivers access the I/O hardware at the lowest possible level (register
programming). Therefore, you must understand how to control the board
with register information.

• Knowledge of port and memory I/O access over various buses. You need
this information to access I/O hardware at the register level.

• Knowledge of PC hardware fundamentals and internals

Resources for Customizing xPC Target Drivers
This section lists the resources that are available to you from The MathWorks.

References
The following MathWorks documentation provides information that you can
refer to when customizing xPC Target drivers:

See... For...

Simulink User’s Guide Overall description of the Simulink environment and how the
Simulink software performs simulations.

MATLAB® External
Interfaces

How to write MATLAB MEX-files.

1-4

Introduction

See... For...

Writing S-Functions How to write MATLAB C-MEX S-functions (noninlined S-functions).
Note the following references in this guide:

• “S-Function Callback Methods — Alphabetical List” the Simulink
software invokes these methods when simulating a model with
S-functions. Real-Time Workshop uses the same methods in
generated real-time applications.

• “SimStruct Functions — Alphabetical List” Contains detailed
descriptions of the functions that access the fields of an S-function’s
simulation data structure (SimStruct). S-function callback
methods use these functions to store and retrieve information
about an S-function.

Real-Time Workshop®
Target Language
Compiler

How to write target language compiler (TLC) files to inline S-function
drivers. This is an optional reference and depends on whether or not
you choose to inline your driver.

Real-Time Workshop
User’s Guide

Overall description of Real-Time Workshop fundamentals, and
guidelines on understanding I/O boards and low-level programming
for drivers for those boards.

MathWorks Consulting
You can alternatively contact the MathWorks Consulting Services Group
about the fee-based creation of a driver for your board.

Source Code
You can examine the source code for existing xPC Target device drivers as a
reference for your custom drivers. Refer to the following directory:

matlabroot\toolbox\rtw\targets\xpc\target\build\xpcblocks

Note In this directory, you might notice that some drivers use outdated xPC
Target driver functions. For the current functions to use, see “xPC Target
Exported Functions” on page 1-6.

1-5

1 Customizing xPC Target™ Drivers

xPC Target Exported Functions
The xPC Target software provides kernel functions that you can use when
writing your device drivers. These functions enable you to input and output
data, configure PCI devices, and specify time-out intervals. Use only the
functions documented in this guide. The guidelines in this document are
not applicable if you are using an xPC Target software version prior to xPC
Target software version 3.2 (R2007a). See Chapter 11, “I/O Functions —
Alphabetical List”, for a description of these functions.

Third-Party Directory
The xPC Target software provides the following directory to help you integrate
your custom driver.

matlabroot\toolbox\rtw\targets\xpc\target\build\xpcblocks\thirdpartydrivers

This directory provides template files that you copy and customize for your
drivers. Place all files that support your drivers in this directory.

What Makes Up an xPC Target Driver?
An xPC Target device driver is an S-function with functions that access an
I/O board.

Like any device driver, an xPC Target driver interfaces between the user and
an I/O device. Unlike typical device drivers, xPC Target device drivers:

• Can have the following parts

- Driver code, that is C code written as an S-function using exported xPC
Target kernel functions (see “xPC Target Exported Functions” on page
1-6)

- Optional Simulink block interface (Simulink mask) that users use to
configure the device and access output

- Optional M-file code that you can write to perform operations such as
cross-block checking or parameter value range checking. You reference
this file through the Simulink mask.

• Can be included in a Simulink library

• Are configured like any other Simulink block

1-6

Introduction

�������	
�

����������������������������

�	
�������

�	
�������	���	�������������

Anatomy of an xPC Target™ Driver

1-7

1 Customizing xPC Target™ Drivers

Before You Start

In this section...

“Introduction” on page 1-8
“Driver Types” on page 1-9
“Bus Types and Register Access” on page 1-9
“Register Access” on page 1-10
“Inlining xPC Target Drivers” on page 1-10

Introduction
This topic assumes that you satisfy the requirements outlined earlier in
“Expected Background” on page 1-3 and that you have reviewed the following
sections to prepare:

• “References” on page 1-4

• “Source Code” on page 1-5

• “xPC Target Exported Functions” on page 1-6

• “Third-Party Directory” on page 1-6

It also assumes that you already have a board for which you want to write
a driver. Before you start, use the following checklist to specify the driver
you want to write:

• Determine the functions of your board that you want to access with your
driver.

• Determine the bus type for the board.

- PCI

- ISA

• Select the I/O access mapping type.

- I/O port mapped

- Memory address mapped

1-8

Before You Start

• Select polling versus interrupt.

• Specify the blocks for the drivers. Identify

- Input and output ports

- Mask parameters

- Work variables to be shared between driver start, output, and terminate
routines

• Determine your timing considerations.

• Decide whether you use Inlined functions.

If yes, see the Target Language Compiler documentation of the Real-Time
Workshop.

Driver Types

• Standard I/O

• Communication

• DMA

• Interrupt-driven

Bus Types and Register Access
The xPC Target software supports the two standard PC bus types, ISA and
PCI. The ISA bus is a 16-bit bus with an 8 MHz clock. Another form of ISA
bus is the PC/104. The PCI bus is a 32-bit or 64-bit bus with a 33 MHz or 66
MHz clock. Another form of PCI bus is the PC/104+ (PC/104-Plus).

A driver performs I/O accesses through either I/O ports or memory addresses
(memory mapped).

The xPC Target software accesses I/O port addresses for ISA and PCI buses
as follows:

1-9

1 Customizing xPC Target™ Drivers

Bus Access

ISA Board switches or jumpers usually select I/O port address and any
memory-mapped region.

PCI The BIOS determines the I/O port address during PCI PNP (Plug
and Play) configurations.

The memory space for I/O boards is different for ISA and PCI boards.

Bus Memory Space

ISA The xPC Target software only permits use of the memory address
between 0xA0000 and 0xFFFFF

PCI Upper memory address space, typically greater than 2 GB

Register Access
A device board supports either I/O port or memory-mapped access to onboard
registers. See the board manufacturer’s register programming documentation.

Inlining xPC Target Drivers
You can choose to inline or not inline xPC Target drivers. Note the distinction
between Simulinkand Real-Time Workshop conditional compilation. Writing
a device driver as an inlined S-function ensures that the driver can coexist
with xPC Target device drivers.

Inlining drivers allows you to customize code generated from Real-Time
Workshop. If you choose to create inlined drivers, you must use the Real-Time
Workshop Target Language Compiler.

Note For convenience, you can create a noninlined version of the driver
first, and create an inlined driver for the Target Language Compiler from
the first driver.

1-10

Creating a Custom Driver

Creating a Custom Driver
The following is a generic procedure for how to create a custom device driver.
For additional notes on writing custom xPC Target drivers, see Chapter 6,
“Custom xPC Target Driver Notes”. For a description of a tool that helps you
create simple custom drivers, see Chapter 7, “Creating Custom Drivers Using
the xPC Target Driver Authoring Tool”. A simple custom device driver is one
which performs no DMA or interrupt handling.

Note You might need administrative privileges to add a custom device driver
to the xPC Targetsystem.

1 Write your driver in C, using the approved I/O functions as appropriate
(see Chapter 9, “I/O Structures — Alphabetical List” and Chapter 11, “I/O
Functions — Alphabetical List”). An example device driver for the analog
inputs of the Diamond MM-32 board is available at

matlabroot\toolbox\rtw\targets\xpc\target\build\xpcblocks\addiamondmm32.c

2 As you write your device driver, you will want to compile and link the
driver, then test it. Compile and link the driver into a MEX-file. For
example:

mex driver.c

This step creates the MEX-file executable, driver.mexw32.

Note A MEX-file is used for simulation on the host and to set data
structure sizes during code generation. It is not used during target
execution.

3 Create an M-file to supplement the main C driver and support the block
mask. For an example of this file, see

matlabroot\toolbox\rtw\targets\xpc\target\build\xpcblocks\diamondmm32.m

1-11

1 Customizing xPC Target™ Drivers

4 Open the Simulink Library Browser and create a new library, for example,
your_company_namelib.mdl (see “Creating Block Libraries” in the
“Working with Block Libraries” in the chapter of Simulink User’s Guide).
Use a unique library name to prevent conflicts with other libraries.

5 In the new library, create an S-function block. From the Simulink Library
Browser, drag an S-Function block to the new library.

6 Configure the S-Function block.

a In the new library, right-click the S-Function block and select
S-Function Parameters.

b In S-function name, enter the name, without extension, of the driver.
For example, addiamondmm32. (This is the driver C-file you created in
step 1).

c In S-function parameters, enter the parameters you defined for the
driver. The parameter names you enter here must match the names you
will later enter for the driver block mask (through the Parameters
and Initialization panes of the Mask Editor dialog box). For example,
firstChan, numChans, range, sampleTime, baseDec. Step 7
describes the block mask creation.

d Leave the S-function modules parameter with the default value,
unless you need to separate your driver C-file into multiple files. If that
is the case, see “Specifying Additional Source Files for an S-Function”
in the “Writing S-Functions for Real-Time Workshop Code Generation”
chapter of the Real-Time Workshop User’s Guide.

1-12

Creating a Custom Driver

7 Double-click the S-Function block and create a block mask (see Chapter 4,
“Masking Drivers”).

8 Save and close the S-Function block.

9 At the bottom of the S-Function block, enter a block name. For example,
MM-32.

10 Save and close the library.

11 To make your new library visible in the Simulink Library Browser, move
it to

matlabroot\toolbox\rtw\targets\xpc\target\build\xpcblocks\thirdpartydrivers

12 Copy and paste sample_xpcblocks.m in

matlabroot\toolbox\rtw\targets\xpc\target\build\xpcblocks\thirdpartydrivers

1-13

1 Customizing xPC Target™ Drivers

Rename this file your_company_namelib_xpcblocks.m and edit this file as
follows:

• Set out.Library to your new library.

out.Library = 'your_company_namelib';

• Set out.Name to a string, such as the library name.

out.Name = 'your_company_namelib Blockset';

This string will appear in the Simulink Library Browser.

• Ensure that out.IsFlat is set to 0.

out.IsFlat = 0;

Note Ensure that you create a function that calls the out structure.

13 (Optional for PCI boards) To enable the getxpcpci function to account for
your new board, copy sample_supported.m to a unique file name. For
example:

your_company_namelib_supported.m

Edit your copy of the file. For each board for which you add a device driver:

a Copy one of the commented structures in the file.

b Remove the comment symbols (%).

c Starting with 1, change the ID number as necessary. Number the device
structures sequentially, starting with 1.

d Replace the field entries with your equivalents.

A structure entry might look like:

boards(1).VendorID = '18f7';
boards(1).DeviceID = '0004';
boards(1).SubVendorID = '-1';
boards(1).SubDeviceID = '-1';
boards(1).DeviceName = '422/2-PCI-335';

1-14

Creating a Custom Driver

boards(1).VendorName = 'Commtech';
boards(1).DeviceType = 'Serial Ports';

e Save and close the file.

f To confirm your entries, type getxpcpci('all') in the MATLAB
Command Window.

14 Ensure that all your driver files, including include files, are in the directory:

matlabroot\toolbox\rtw\targets\xpc\target\build\xpcblocks\thirdpartydrivers

Ensure that these files have unique names to prevent conflicts.

15 To update the directories that you added, at the MATLAB Command
Window, type

rehash toolbox

When you are done, your library will appear in the Simulink Library Browser
with xPC Target: added to the beginning of the library name.

xPC Target: your_company_namelib Blockset

1-15

1 Customizing xPC Target™ Drivers

Debugging Notes
While developing your custom driver, you can use printf statements in your
code. This displays output on the left-hand side of the target PC monitor. If
your printf statements scroll off the monitor, consider disabling the target
PC scope area to provide more display area for these statements:

1 At the MATLAB Command Window, type xpcexplr to start xPC Target
Explorer.

2 In xPC Target Explorer, navigate to target_PC_node >
Configuration > Appearance.

3 Clear the Enable target scope check box.

4 Recreate the target boot disk and reboot the target PC.

The scope area on the target PC monitor no longer appears.

5 Continue with the device driver development.

1-16

2

PCI Drivers

• “PCI Bus Considerations” on page 2-2

• “Sample PCI Device Driver” on page 2-8

2 PCI Drivers

PCI Bus Considerations

In this section...

“Introduction” on page 2-2
“PCI Configuration Space API” on page 2-3
“Memory-Mapped Accesses” on page 2-6
“I/O Port Accesses” on page 2-6

Introduction
When writing xPC Target drivers for PCI devices, consider the memory access
method. A PCI device can be either I/O port mapped or memory mapped.

• I/O port mapped — The BIOS assigns a port range.

• Memory mapped — The BIOS assigns a memory region, if your device
is memory mapped.

The PC BIOS automatically assigns a conflict-free set of resources to any PCI
device found in the system at boot-up. You typically do not know where the
board resides (base address) before driver initialization. However, you can
obtain this information by querying the PCI configuration space at run time.
The xPC Target software provides functions to accomplish this (see the “PCI
Configuration Information” on page 10-2 functions).

To locate a PCI device, you need the following:

• Vendor and device ID

• Optionally, subsystem vendor and subsystem device ID

Note You need the subsystem vendor and subsystem device ID if the
vendor and device ID do not uniquely identify the board.

• Slot number or bus and slot number

2-2

PCI Bus Considerations

You can have the drivers locate PCI devices in one of the following ways:

• If the system has one board of any one type, you can use the driver slot
option to search for the first board that matches a vendor and device ID. To
initiate this search, set this option to -1.

• If the system contains multiple boards of the same type, setting the slot
option to -1 does not find the additional boards. In that case, specify the
bus and slot numbers with the vendor and device IDs.

PCI Configuration Space API
Before you can access a PCI device, you need to access the configuration space
to locate the board in the target PC memory. This section describes the
procedure to do this.

For PCI devices, the driver will need to access the PCI configuration space
for the board. This space contains relevant board information such as the
base address and access type (I/O port or memory mapped). The xPC Target
software provides functions that allow the driver to access this space.

• Vendor and device ID — The driver searches all boards for the specified
vendor (manufacturer) and device ID. The PCI Steering Committee, an
independent standards body, assigns a unique vendor ID (uint16) to each
PCI board vendor. Each vendor then assigns a unique ID to each PCI board
type it supports.

Note Vendor and device IDs do not always uniquely identify a board. For
example, all boards that use the PLX-9080 bus interface chip have a vendor
ID of 10B5 (the vendor ID assigned to PLX Technology, Inc.). The device
ID for the chip is 9080. In cases like this, to select a particular board that
contains this chip, you must use a subvendor and subdevice ID in addition
to the vendor and device IDs.

• Slot number or bus and slot number — The driver looks only for the board
that matches the specified vendor and device ID and slot number.

2-3

2 PCI Drivers

PCI Device Information
Use the xpcGetPCIDeviceInfo function to get information for a PCI device in
your system. The syntax for this function is:

int xpcGetPCIDeviceInfo (uint16_T vendorId, uint16_T deviceId,
uint16_T subVendorId, uint16_T subDeviceId, uint16_T bus,
uint16_T slot, xpcPCIDevice *pciInfo);

This function returns the xpcPCIDevice structure filled according to the
following:

If You Supply... This Function....

All the parameters Looks for a device that matches all the parameters
and returns the xpcPCIDevice structure for that
device. Use this form if you know that your system has
multiple boards from the same vendor with the same
ID and you want your user to specify the exact device.

XPC_NO_SUB for
the subVendorId
or subDeviceId
parameter

Does not consider the subvendor or subdevice ID when
looking for a match for the specified device. It returns
the xpcPCIDevice structure for a device that matches
the other parameters. You can use this form if you
do not plan to use the subVendorId or subDeviceId
values.

XPC_NO_BUS_SLOT
for the slot for the
device

Returns the first PCI device it finds that matches
the remaining parameters. You can use this form if
you know that your system has only one board with
a particular ID set.

Passing Slot Information from the Block Mask to Its Driver
xPC Target drivers use the following convention to fill in slot parameters and
retrieve slot information. Choose the convention that will work best for you.

2-4

PCI Bus Considerations

Set... To...

Set slot = -1 Assume bus = 0 and call the xpcGetPCIDeviceInfo
function to find the first instance of the board.

Set slot = S Assume bus = 0 and call the xpcGetPCIDeviceInfo
function to find the specified board. If the board
matches the IDs, return the PCI information to the
driver. Otherwise, return an error.

Set slot = [B, S] Check bus B and slot S for the specified board. If the
board matches the IDs, return the PCI information to
the driver. Otherwise, return an error.

Setting slot = [0, S] is identical to slot = S.

The following example illustrates how to use the xpcGetPCIDeviceInfo
function to program the driver to accept slot number input or slot and bus
number input from the driver block.

1 Call this function from the mdlStart callback function.

2 Pass the slot number or slot and bus number into the xpcGetPCIDeviceInfo
function using code like the following:

uint16_T vendorId, deviceId;

int32_T bus, slot, subvendor, subdevice;

xpcPCIDevice pciInfo;

/* S_PCI_SLOT_ARG is passed in from the mask */

/* Typically the slot arg is a scalar containing -1 if there is only one board of

this type in the target */

/* If there are multiple boards of this type the slot arg is a vector containing bus

and slot info */

/* This code snipped parses the slot arg into bus and slot */

if ((int_T)(mxGetN(ssGetSFcnParam(S, S_PCI_SLOT_ARG))) == 1) {

bus = 0;

slot = (int32_T)(mxGetPr(ssGetSFcnParam(S, S_PCI_SLOT_ARG))[0]);

} else {

bus = (int32_T)(mxGetPr(ssGetSFcnParam(S, S_PCI_SLOT_ARG))[0]);

slot = (int32_T)(mxGetPr(ssGetSFcnParam(S, S_PCI_SLOT_ARG))[1]);

}

2-5

2 PCI Drivers

vendorId = (uint16_T)0x1234;

deviceId = (uint16_T)0x9876;

subvendor = (uint16_T)0x5678;

subdevice = (uint16_T)0x8765;

/* Set subvendor and subdevice to XPC_NO_SUB, XPC_NO_SUB if they are not necessary */

/* xpcGetPCIDeviceInfo() populates the pciInfo struct */

if (xpcGetPCIDeviceInfo(vendorId, deviceId,

subvendor, subdevice,

bus, slot,

&pciInfo)) {

sprintf(msg, "Board 0x%x not found at bus %d slot %d", deviceId, bus, slot);

ssSetErrorStatus(S, msg);

return;

}

For detailed information on the xpcPCIDevice structure, see xpcPCIDevice.

Memory-Mapped Accesses
A memory-mapped PCI board uses up to six memory regions to access board
regions and memory. Each region might also have a different length. You
must call the xpcReserveMemoryRegion function for each PCI memory region
you want to access; use the returned virtual address to access the region.
Failure to do this will result in a segmentation fault.

To access a memory mapped location, do the following:

1 Declare a pointer of the appropriate size to the memory. For example:

volatile uint32 *csr; /* Control and status register */

Note that you will want to use the volatile keyword here; otherwise, the
compiler might optimize away accesses to this location.

2 Set its value (address) to the physical address at which the register resides.

I/O Port Accesses
To access I/O ports, use the following functions:

2-6

PCI Bus Considerations

• xpcInpB, xpcInpW, xpcInpDW— I/O port input functions for byte, word,
and double word accesses

• xpcOutpB, xpcOutpW, xpcOutpDW — I/O port output functions for byte,
word, and double word accesses

2-7

2 PCI Drivers

Sample PCI Device Driver
For example PCI device driver code, see

matlabroot\toolbox\rtw\targets\xpc\target\build\xpcblocks\dikpc

i1800.c

This driver illustrates digital input driver code for the Keithley 1800 series
PCI devices.

Note Remember to enter the C-file name (without the extension) as the
S-function name for the S-Function block.

2-8

3

ISA and PC/104 Drivers

3 ISA and PC/104 Drivers

ISA and PC/104 Bus Considerations

In this section...

“Introduction” on page 3-2
“I/O Mapped” on page 3-2
“Memory Mapped” on page 3-3

Introduction
When writingxPC Target drivers for ISA and PC/104 devices, consider the
memory access method. A PCI device can be either port mapped or memory
mapped. Most ISA and PC/104 boards are port mapped. Those that are
memory mapped typically need large register banks or are interfaced via
dual-port memory.

Note ThexPC Target kernel does not support ISA and PC/104 PNP boards.
This means that you can write xPC Target device drivers only for ISA and
PC/104 boards for which you can set the base address manually. To manually
set the base address, insert jumpers or move DIP switches on the board.

• Port mapped

The base port address on the board is set via jumpers or switches. You
might need to reset these addresses if there are conflicts.

• Memory mapped

The I/O and memory on the board are set via jumpers or switches. You
might need to reset these addresses if there are conflicts.

I/O Mapped
The base port address on the board is set via jumpers or switches. Drivers
cannot discover these addresses on their own; you must specify these
addresses to the driver.

3-2

ISA and PC/104 Bus Considerations

Memory Mapped
The I/O and memory on the board is set via jumpers or switches. Drivers
cannot discover these addresses on their own; you must specify these
addresses to the driver.

Reserved Space on the Target PC
The xPC Target kernel reserves space in the region (C0000 to DC000) for
memory-mapped I/O cards. You must set up ISA and PC/104 cards to use
addresses in this range.

3-3

3 ISA and PC/104 Drivers

3-4

4

Masking Drivers

• “Creating Driver Subsystem Masks” on page 4-2

• “Driver Mask Guidelines” on page 4-3

• “Cross-Block Checking” on page 4-5

• “When You Are Done” on page 4-6

• “Sample Driver Mask” on page 4-7

4 Masking Drivers

Creating Driver Subsystem Masks
This chapter describes guidelines for creating a Simulink block user interface
(mask) for the S-Function block associated your driver. A mask defines the
menu items that will be passed to the S-function. The mask can call an M-file
to do parameter or range value checking. You can also modify the labels of
a block to show port numbers or other information. After you create the C
code for an xPC Target device driver:

1 Create an optional M-file.

2 Create an S-Function block for the driver.

3 Create a mask for the S-Function block.

This is the basic Simulink mask, with parameters and descriptions as
necessary. When you are done, you can make the device driver and its
mask available for users to add to their models.

4-2

Driver Mask Guidelines

Driver Mask Guidelines
This topic lists guidelines you should follow when creating a mask for your
xPC Target driver. You should already know how to create masked blocks.
See the “Working with Block Masks” chapter in Simulink User’s Guide for
further information.

Users access the masked block to interact with the driver, which in turn
interacts with the device.

• Create an S-Function block for the driver.

• Decide on the set of parameters the user will need to provide to the driver.
You should have already programmed this into the driver C code itself.

• Select appropriate descriptive names for these parameters.

• For each parameter, decide if the parameter can accept a finite number of
possible input values. If yes, consider using one of the following widgets:

- Check box — For yes/no or 1/0 inputs

- Drop-down list — For a finite list of choices

Your mask can also be dynamic, where the dialog changes according to
user selections.

• Choose readable and appropriate variable names.

• As necessary and appropriate, configure the library block so that the block
mask modifies its label according to user input. For example, a check box
might cause the dialog to change.

• Ensure that the title beneath the driver block terminates with a blank
space. This is because if a model contains more than one block of any given
type, Simulink appends a number to the title under the block. Adding a
blank space to the end of the label ensures readability.

• Name the block appropriately so that it indicates the purpose of the driver.

• If you want to link help information to the mask Help button, see “Block
Help Field” in the “Working with Block Masks” chapter of Simulink User’s
Guide for details.

• From within the mask, you can call a custom M-file to perform a number of
operations, including the following:

4-3

4 Masking Drivers

- Range checking for all parameters. For example, if you expect input
values from 1 to 10, do not allow users to enter negative values, or
values greater than 10.

- Cross-block checking (see “Cross-Block Checking” on page 4-5).

4-4

Cross-Block Checking

Cross-Block Checking
Cross-block checking determines if multiple blocks are trying to access the
same hardware. You should include cross-block checking in your driver
to prevent such conflicts. You can perform cross-block checking by calling
find_system from the block mask in a number of ways. Use the following
guidelines when performing cross-block checking:

• The recommended way is to call the find_system function from the block
InitFcn callback function. There are two phases of M-file execution during
an update system operation. If you call the find_system function from a
block InitFcn callback function, defined in the Block Parameters dialog of
the block, no additional updates are triggered.

• Decide on the level of cross-block checking for your hardware. For example,
boards that use the 8255 chip for digital I/O need to check if two different
blocks are requesting opposing directions (for example, input and output)
for the same group of 8 bits. On this chip, there are three groups of 8
bits. You can configure each group for input or output. The associated
xPC Target driver generates an error in InitFcn if find_system detects
that two blocks are trying to use the same group of 8 bits for input and
output. See

matlabroot\toolbox\rtw\targets\xpc\target\build\xpcblocks\mpci8255.m

which is called as mpci8255(1) for the Measurement Computing PCI-DAS
1200 digital input and output blocks. During an update diagram sequence,
Simulink calls the InitFcn callback function once for each block. Simulink
might call the initialization commands in the mask multiple times.

4-5

4 Masking Drivers

When You Are Done
After you write the driver S-function and create the S-Function block, optional
block mask, and M-file for it, be sure to:

• Check the text of each error message for spelling and appropriateness.

• (Optional) Use a coding standard indentation such as four or eight spaces
with no tabs.

• Copy your new blocks into a custom directory with a unique name.

To enable your new blocks to be viewable in the Simulink Library Browser,
see “Creating a Custom Driver” on page 1-11.

• Test the driver for the following:

- Run the mex command on the driver to build the driver for simulation
and code generation.

- Verify the hardware I/O under as many conditions as possible.

4-6

Sample Driver Mask

Sample Driver Mask
The following is the block mask for the Diamond MM-32 Analog Input block.

If you were to create this mask as a new mask, you would:

1 Open the Mask Editor for the block.

2 Select the Parameters tab and click the Add button on the left three times.

Three blank lines appear in the Dialog parameters section. Fill them in as
follows, starting with the first line:

• In the Prompt column, enter

Channel configuration

First channel number:

4-7

4 Masking Drivers

Number of channels:

Range

Sample time:

Base address (for example 0x300):

• In the Variable column, enter the parameter names. Be sure that these
names match the S-function parameters field of the S-Function block.

configuration

firstChan

numChans

range

sampleTime

base

• In the Type column, select:

popup

edit

edit

popup

edit

edit

• In the Evaluate and Tunable columns, ensure that the first five check
boxes of Evaluate and all the check boxes for Tunable are selected.

4-8

Sample Driver Mask

3 Select the Initialization tab. The tab displays the dialog variables you
entered in the Parameters tab.

4 In the Initialization code section, type

phase = 2;
[baseDec, maskDisplay, maskDescription] =
maddiamondmm32(phase, configuration, firstChan,
numChans, range, base);
set_param(gcb, 'MaskDescription', maskDescription);
set_param(gcb, 'MaskDisplay', maskDisplay);

where maddiamondmm32 references the maddiamondmm32.m file for the
driver.

In this M-file, you should check the range values of the parameters.
Checking the mask here will catch illegal values early in the build process.

4-9

4 Masking Drivers

This example returns a string to display on the block with the variable
port_label commands with which to label the input and output ports. The
number and content of the port_label commands depend on the channel
vector that the user enters in the mask.

5 Select the Documentation tab. This tab contains three fields,Mask type,
Mask description, and Mask help.

In the Mask type field, enter the type of driver. For example:

addiamondmm32

In the Mask description field, enter a description for the driver. For
example:

MM-32
Diamond
Analog Input

In the Mask help field, if you are providing any online documentation to
associate with the Help button, you can call that online documentation
from this field. See “Block Help Field” in the “Working with Block Masks”
chapter of Simulink User’s Guide for details.

6 Click OK to save the mask.

After you create the block mask, you can define an InitFcn callback for the
block. A model calls this callback at the start of model simulation.

1 Right-click the block and select Block Properties from the drop-down list.

2 Select the Callback tab from the dialog. From the list, select InitFcn.
Enter M-code in the edit box.

One convention is to use the same function that is used at mask
initialization time (for example, maddiamondmm32.m), but with a single
argument that indicates that this is being called at InitFcn time.

maddiamondmm32(1)

4-10

Sample Driver Mask

At InitFcn time, no variables in the mask exist yet. You cannot pass them
into the InitFcn. However, in the function, you can get the string values
using the get_param function. For example:

function [baseDec, maskDisplay, maskDescription] = ...

maddiamondmm32(phase, configuration, firstChan, numChans, range, base) %#ok

vendorName = 'Diamond';

deviceName = 'MM-32';

description = 'Analog Input';

maskType = 'addiamondmm32';

if phase ~= 2 % assume InitFcn unless phase 2

base = get_param(gcb, 'base');

blocks = find_system(bdroot, 'FollowLinks', 'on', ...

'LookUnderMasks', 'all', 'MaskType', maskType, 'base', base);

if length(blocks) > 1

error('xPCTarget:DiamondMM32:Block',...

'Only one Diamond Systems MM-32 A/D block per ...

physical board allowed in a model - each block of ...

this type must have a distinct ISA address.');

end

return

end

4-11

4 Masking Drivers

4-12

5

Interrupt Support

• “xPC Target Interrupts” on page 5-2

• “Adding Interrupt Support” on page 5-7

• “Hook Function Prototypes — Alphabetical List” on page 5-15

5 Interrupt Support

xPC Target Interrupts

In this section...

“Introduction” on page 5-2
“Interrupt Processing in the xPC Target Environment” on page 5-2

Introduction
If your device supports interrupts, you can use the procedures in this chapter
to add your custom interrupt functions to the xPC Target framework.

Your users can use interrupts in xPC Target applications in one of the
following ways:

• Use the interrupt with the xPC Target Async IRQ Source block to execute a
function-call subsystem when an interrupt occurs.

• Use the interrupt to run the model in place of the timer interrupt, available
through the model Configuration Parameters dialog box in the Real-Time
Workshop > xPC Target options pane.

Note Although users can use interrupts in one of two ways, you program for
these interrupts using the same procedure, as described in “Adding Interrupt
Support” on page 5-7. However, before you start programming the interrupts,
see “Interrupt Processing in the xPC Target Environment” on page 5-2 for a
description of the flow of xPC Target interrupt processing.

Interrupt Processing in the xPC Target Environment
When a model executes, it executes in the following order:

1 Call all mdlStart routines in block execution order.

2 Call the Start function, if one exists.

3 Allow background graphics and network tasks to run until an interrupt
occurs.

5-2

xPC Target™ Interrupts

The following illustrates the flow of processing once a hardware interrupt
occurs. This is background information to help you understand the context in
which the interrupt functions run.

5-3

5 Interrupt Support

���������������

�	������ ���!�������
���������"�
�
�

#����� ���!�������
�������	��	������
$��%&�'%�(&)

!�������
�	�����
���������)

(���*	�������
������+��	

�	�����
� ���!�������
���������"�
�
�

,���+��
�����)

&��������������������

!����	�+������
����+�
��&-

,
�����&-�
������.���������

��	�������������
������
����������	���
�.
�
���/
��������������������
�
	���*��

'�

0�

'�

0�

'�

0�

������+��	��"�����
�	�����������
��������������/���*����������
����+�
�������

5-4

xPC Target™ Interrupts

When a hardware interrupt occurs, the generated code uses the following steps
for each device on this IRQ to determine which device generated the interrupt:

1 Call the PreHook function, if one exists. The return value determines the
action.

2 The generated code determines whether this device generated the interrupt.

• If the PreHook function returns XPC_RUN_ISR, execution continues to
step 3.

• If the PreHook function returns XPC_DROP_ISR, the generated code goes
to step 5.

3 The generated code determines whether the Async IRQ Source block has a
function-call subsystem connected.

• If so, the generated code calls the interrupt service function-call
subsystem. When the interrupt service function subsystem returns, the
generated code goes to step 4 on page 5-5.

• If this board is configured to run the model, and this board did interrupt,
send a wakeup call to the model thread. The model thread does not
immediately execute. It waits until after all the boards that use this IRQ
have been checked and the return from the interrupt has been executed.

4 Call the PostHook function, if one exists. If one does not exist, the
generated code goes to step 5.

5 The generated code checks whether another device using the same IRQ
exists in the system.

If so, execution returns to the beginning of step 1.

If no other device exists, generated code goes to step 6.

6 Returns from the interrupt.

The xPC Target kernel now runs the highest priority thread. The highest
priority ready thread is the model if a wakeup call was sent to it.

5-5

5 Interrupt Support

Note The Allow preemption of function call subsystem check box has
no effect. Interrupts are never enabled when the function-call subsystem
is executed.

5-6

Adding Interrupt Support

Adding Interrupt Support

In this section...

“Introduction” on page 5-7
“Guidelines for Creating Interrupt Functions” on page 5-9
“Filling in the Driver board Structure” on page 5-10

Introduction
To add interrupt handling for a custom driver, you must create

• A descriptor file to connect a board type to the functions needed to start,
handle, and stop interrupts

• A C file to implement these functions

Include the following functions. See “Hook Function Prototypes —
Alphabetical List” on page 5-15 for the prototype details.

Function Description

PreHook Runs just before either a function-call subsystem
or entire model is called. Program this function to
acknowledge the interrupt and cause the board to
stop issuing the interrupt signal.

PostHook Runs after return from function call on interrupt,
and before model execution. It is typically not used.

5-7

5 Interrupt Support

Function Description

Start Runs as the last item when starting a model, just
before the model runs. It is typically used to turn
on interrupt generation. Program this function to
enable interrupts on the board and start any action.

Stop Runs at the beginning of a stop request, before any
mdlTerminate entries for any block in the model
runs. It is typically used to turn off interrupt
generation. Program this function to disable
interrupts from the board and stop any action. This
is the first action called, when a target application
stops executing.

Note You must use the Stop function to turn off interrupts if you have turned
them on in the Start function. In this way, the stop and start functions
should cancel each other.

To add interrupts for your custom driver, use the following general steps:

1 Create a hook file in the following directory:

matlabroot\toolbox\rtw\targets\xpc\target\build\
xpcblocks\thirdpartydrivers

Hook files are C files (.c). For example, look at files in
matlabroot\toolbox\rtw\targets\xpc\target\build\src, such as
xpc6804hooks.c.

2 Name the hook file something like:

your_company_name_board_hook.c

3 As necessary, create the interrupt functions the PreHook, PostHook, Start,
and Stop functions and add them to the hook file. See “Guidelines for
Creating Interrupt Functions” on page 5-9 for information on how to create
these functions.

5-8

Adding Interrupt Support

4 Copy the file sample_int.m to a unique file name in the following directory:

matlabroot\toolbox\rtw\targets\xpc\target\build\
xpcblocks\thirdpartydrivers

For example:

your_company_name_int.m

The xPC Target software searches in this directory for file names that end
with _int.m and looks for board interrupt descriptions.

5 Open and edit the following file:

matlabroot\toolbox\rtw\targets\xpc\target\build\
xpcblocks\thirdpartydrivers\your_company_name_int.m

Add to this file a board structure for each xPC Target supported board for
which interrupt functions have been written. See “Filling in the Driver
board Structure” on page 5-10 for a description of how to fill in a board
structure.

6 Save and close the file.

7 At the MATLAB Command Window, type:

rehash toolbox

8 Restart the MATLAB interface to update the Async IRQ Source block and
Configuration Parameters dialogs.

Guidelines for Creating Interrupt Functions
xPC Target interrupt functions have predefined purposes and typically follow
a particular order. This section describes the guidelines on creating interrupt
functions. See “Hook Function Prototypes — Alphabetical List” on page 5-15
for the prototypes for these functions.

To prepare for the creation of the hook file, examine the existing xPC Target
hook files (matlabroot\toolbox\rtw\targets\xpc\target\build\src) and
copy and modify one that is the same board type, PCI or ISA, as the board for
which you are creating a custom driver. For example, xpc6804hooks.c is for
an ISA board. Place your new file in

5-9

5 Interrupt Support

matlabroot\toolbox\rtw\targets\xpc\target\build\
xpcblocks\thirdpartydrivers\

When modifying an existing hook file:

• Change the names of all of the functions to match those you have selected
for your board.

• Do not change the function signatures.

• Do not remove the __cdecl string.

• The PreHook and PostHook functions run with interrupts disabled. Do not
change the interrupt status in these functions.

When writing the interrupt functions, note the following:

• When an interrupt occurs, the kernel calls the PreHook function.

Note This function is run with interrupts disabled. If this function cannot
turn off the interrupt, an infinite loop will occur because the interrupt
service routine (ISR) will continuously call the PreHook function.

• Because the PostHook function has limited use, you most likely do not need
to define this function. Set this function to 'NULL' if you do not need it.

• The generated code calls the Start function during the startup phase of
model execution as the last action, after the model has called all mdlStart
routines.

This function is typically used to enable interrupts from the board. The
target application is ready to accept interrupts a few microseconds after
this function is called. Do not try to enable interrupts from the board
mdlStart function.

• When a target application stops executing, the generated code calls the
Stop function first. Disable interrupts from the board in this function.

Filling in the Driver board Structure
This section describes how to fill in a driver board structure, element by
element.

5-10

Adding Interrupt Support

• Depending on the bus type of your board, select a board structure of an
existing board that has the same bus type. The information passed to the
functions is slightly different for an ISA board or a PCI board. You will use
this structure as a template for your own board entry. The following is a
structure for an ISA or PC/104 device:

board.name = 'RTD_DM6804';
board.VendorId = -1;
board.DeviceId = 1;
board.SubVendorId = -1;
board.SubDeviceId = -1;
board.PreHookFunction = 'xpc6804';
board.PostHookFunction = 'NULL';
board.HookIncludeFile = 'xpc6804hooks';
board.StartFunction = 'xpc6804start';
board.StopFunction = 'xpc6804stop';

The following is a structure for a PCI device:

board.name = 'General Standards 24DSI12';
board.VendorId = hex2dec('10b5');
board.DeviceId = hex2dec('9080');
board.SubVendorId = hex2dec('10b5');
board.SubDeviceId = hex2dec('3100');
board.PreHookFunction = 'xpcgs24dsi12prehook';
board.PostHookFunction = 'NULL';
board.HookIncludeFile = 'xpcgs24dsi12hooks';
board.StartFunction = 'xpcgs24dsi12start';
board.StopFunction = 'xpcgs24dsi12stop';

• name — Enter an appropriate board name string. The xPC Target
software uses this string to populate the drop-down list for the I/O board
generating the interrupt parameter in the following:

- Async IRQ Source block

- PCI slot (-1: autosearch) or ISA base address parameter in the
xPC Target Options section of the model Configuration Parameters
dialog box

• VendorId, DeviceId, SubVendorId, SubDeviceId — Enter the appropriate
ID strings. If you have a PCI board, the board manufacturer identifies

5-11

5 Interrupt Support

that board with either two or four ID values, depending on the specific
hardware. When calling the hook functions, the xPC Target kernel obtains
the PCI information for the board and passes it to the hook functions. Use
these parameters to help identify the interrupting board.

- For VendorId and DeviceId, enter the IDs you get from the board
manufacturer.

- Many boards do not have SubVendorId and SubDeviceId values. In
these cases, insert the value -1 to prevent The xPC Target software
from checking for them.

If you have an ISA board, it does not have a vendor or device ID; instead,
the generated code will insert the ISA base address in the first base address
entry of the PCI structure. To indicate to the kernel that this is an ISA
board, set VendorId to -1 and DeviceId to 1.

If you do not need hook functions:

- Set VendorId to -1 and DeviceId to -1.

- Set Fnc and PostHookFcn to 'NULL'.

- Set StartFunction and StopFunction to 'NULL'.

The Async IRQ Source block will still call the subsystem when an interrupt
occurs.

The following table summarizes your options for this element:

VendorId DeviceId Usage

+ID +ID PCI board
-1 +1 ISA board
-1 -1 Special case: If the driver does not need hook

functions. The driver can still use the Async IRQ
Source block. As an example, see the source code
for the serial communication driver.

• Enter the names of the interrupt functions. See “Hook Function Prototypes
— Alphabetical List” on page 5-15 for the prototype details.

5-12

Adding Interrupt Support

- PreHookFunction

Prototype:

int __cdecl your_company_name_boardPreHook(xpcPCIDevice *pciInfo);

- PostHookFunction

Prototype:

void __cdecl your_company_name_boardPostHook(xpcPCIDevice *pciInfo);

- StartFunction

Prototype:

void __cdecl your_company_name_boardStart(xpcPCIDevice *pciInfo);

- StopFunction

Prototype:

void __cdecl your_company_name_boardStop(xpcPCIDevice *pciInfo);

If any of these four functions does not need to exist, set the corresponding
board structure entry to 'NULL' to prevent calls to that function in that
context.

Note The differences between hook functions for PCI and ISA devices are:

- PCI devices — A hook function for a PCI device has all fields of the
xpcPCIDevice structure filled in except the VirtAddress field. To get
the virtual address for a physical memory, in the Start function, call
the xpcReserveMemoryRegion function and save the resulting virtual
address in the VirtAddress field of the xpcPCIDevice structure. A
pointer to the same instance of this structure is passed to all four
functions. This action makes data, such as virtual addresses, available
to all functions.

- ISA devices — A hook function for an ISA device has the base I/O
address entered in the first physical address. No other fields in the
xpcPCIDevice structure are filled in.

5-13

5 Interrupt Support

• HookIncludeFile — Interrupt handling file that contains the
PreHookFunction, PostHookFunction, StartFunction, and StopFunction
functions for this board. Specify this name without the .c extension.

• Specify this structure for each board for which interrupt functions have
been written. For example:

board(1).name = 'name1';
.
.
.
board(2).name = 'name2';

5-14

Hook Function Prototypes — Alphabetical List

Hook Function Prototypes — Alphabetical List
• your_company_name_boardPostHook

• your_company_name_boardPreHook

• your_company_name_boardStart

• your_company_name_boardStop

5-15

your_company_name_boardPostHook

Purpose Run after return from interrupt service routine function-call subsystem
or after sending wakeup call to model thread

Syntax void __cdecl your_company_name_boardPostHook(xpcPCIDevice
*pciInfo);

Argument pciInfo Pointer to the PciDevice structure.

Description your_company_name_boardPostHook is not typically required. If you
do not need this function, set it to 'NULL' in

matlabroot\toolbox\rtw\targets\xpc\target\build\
xpcblocks\thirdpartydrivers\your_company_name_int.m

See Also xpcPCIDevice

5-16

your_company_name_boardPreHook

Purpose Run just before the interrupt service routine

Syntax int __cdecl your_company_name_boardPreHook(xpcPCIDevice
*pciInfo);

Argument pciInfo Pointer to the PciDevice structure.

Description your_company_name_boardPreHook runs just before the model-level
interrupt service routine (either a function-call subsystem or entire
model) is called.

Return This function must check the status register on the board to determine
if the board caused the interrupt. It returns one of the following:

• XPC_RUN_ISR— If the function determines that the board did cause
the interrupt, the function must perform the required operation to
stop the board from generating the interrupt. The function then
returns this value.

• XPC_DROP_ISR — If the function determines that the board did not
cause the interrupt, this function returns this value.

See Also xpcPCIDevice

5-17

your_company_name_boardStart

Purpose Run as the last item in mdlStart

Syntax void __cdecl your_company_name_boardStart(xpcPCIDevice
*pciInfo);

Argument pciInfo Pointer to the PciDevice structure.

Description your_company_name_boardStart runs as the last item after all
mdlStart functions. It is typically used to turn on interrupt generation.

See Also xpcPCIDevice

5-18

your_company_name_boardStop

Purpose Run at the beginning of mdlTerminate

Syntax void __cdecl your_company_name_boardStop(xpcPCIDevice
*pciInfo);

Argument pciInfo Pointer to the PciDevice structure.

Description your_company_name_boardStop runs before the mdlTerminate function
of the blocks in the model. It is typically used to turn off interrupt
generation.

See Also xpcPCIDevice

5-19

your_company_name_boardStop

5-20

6

Custom xPC Target Driver
Notes

• “S-Function Guidelines” on page 6-2

• “mdlStart and mdlTerminate Considerations” on page 6-4

• “DMA Considerations” on page 6-5

• “Passing Parameters” on page 6-6

• “Accessing Registers” on page 6-7

6 Custom xPC Target™ Driver Notes

S-Function Guidelines
You implement xPC Target device driver blocks using Simulink S-functions.
An S-function is a set of subroutines that implements a function. On the host,
you can write an S-function in M-code, C, or Fortran. For xPC Target device
drivers, you must write an S-function in C.

Simulink S-functions have a number of callback methods. For xPC Target
drivers, you typically need to write C code for the following callback methods:

Method Description

mdlInitializeSizes Initializes the S-function with the number of inputs, outputs,
states, parameters, and other characteristics.

mdlInitializeSampleTimes Initializes the sample rates of the S-function.
mdlStart Initializes the state vectors of this S-function. It also initializes

hardware as necessary.
mdlOutputs Computes the signals that this block emits.
mdlTerminate Performs any actions required at termination of the simulation.

After you create the S-function, create a mask for it. See Chapter 4, “Masking
Drivers”. Also, refer to the Simulink documentation (in particular, Writing
S-Functions).

Of particular note when writing S-functions:

• Keep track of the input parameters the driver will require. When you
create a mask for the driver, you will need to know this.

• Work vectors are not shared between runs. All S-function work variables
are cleared after calling mdlTerminate. This implies that each time the
S-function calls mdlStart, you must reinitialize all work variables.

• Declare all memory-mapped registers as volatile.

• An S-function is compiled into a MEX-file to run as part of the simulated
model on the host PC. During code generation, the S-function calls the
mdlInitializeSizes and mdlInitializeSampleTimes functions to
determine the data structures that are used on the target. The same C-file

6-2

S-Function Guidelines

is also compiled with your application to run on the target PC. Because of
the following reasons, you must conditionally compile code for the host
PC and the target PC.

- The host PC runs Windows and the target PC runs the xPC Target
kernel.

- The host PC does not have the same I/O hardware as the target PC.

The preprocessor symbol MATLAB_MEX_FILE is defined when you compile
for simulation (via mex). Undefine this symbol when compiling for the xPC
Target environment. Use this symbol to conditionally compile host PC or
target PC specific code. For example:

#ifdef MATLAB_MEX_FILE /* host/simulation */
/* simulation code, typically nothing */

#else /* target */
/* code to access I/O board */

endif

If you want the code to run on both the host and target PCs, do not
conditionalize the code.

• Include the xpctarget.h file in your S-function.

This provides definitions for the functions exported by the xPC Target
kernel. The xPC Target kernel exports a number of functions for use in
device drivers.

See “mdlStart and mdlTerminate Considerations” on page 6-4 for notes on
specific applications of the callback methods.

6-3

6 Custom xPC Target™ Driver Notes

mdlStart and mdlTerminate Considerations
When you load a target application onto a target PC, the driver executes the
mdlStart callback method. If the execution is successful, the driver then
executes mdlTerminate.

If mdlStart does not successfully complete, the application does not execute
mdlTerminate. (Typically, mdlStart might not successfully complete if
the application cannot find a referenced I/O board or if the board does not
successfully initialize.)

When the target application does start, it executes mdlStart again, then
repeatedly executes mdlOutputs. At the end of target application execution,
the application calls the mdlTerminate function.

With the above considerations, write mdlStart and mdlTerminate so that
they cancel each other out. Ensure that mdlTerminate deallocates any
resources that you allocated in mdlStart. For example, if you set an output
to high in mdlStart, reset it to the default level in mdlTerminate. (Failure
to reset the output causes a high output before the application starts.) As
another example, if, in the mdlStart function, you allocate memory, have
mdlTerminate free the memory.

Although this description distinguishes between the driver initialization and
application start phases, you do not need to actually differentiate between
them. If you do need to do so, use the xpcIsModelInit function. This function
returns 1 while the model is initializing, and 0 otherwise.

6-4

DMA Considerations

DMA Considerations
If your board directly accesses system RAM, such as a DMA controller, you
must allocate that memory using the xpcAllocPhysicalMemory function.
This function allocates the buffer such that the buffer virtual address is the
same as its physical address.

6-5

6 Custom xPC Target™ Driver Notes

Passing Parameters
See “Passing Parameters to S-Functions” in Writing S-Functions.

6-6

Accessing Registers

Accessing Registers

In this section...

“I/O Space” on page 6-7
“Memory-Mapped Space” on page 6-7

I/O Space
For registers in I/O space, use the xPC Target I/O read and write functions:

• Read functions

uint32_T xpcInpDW(uint16_T port); // read a 32 bit word
uint16_T xpcInpW(uint16_T port); // read a 16 bit word
uint8_T xpcInpB(uint16_T port); // read an 8 bit byte

• Write functions

void xpcOutpDW(uint16_T port, uint32_T value); // write 32 bits

void xpcOutpW(uint16_T port, uint16_T value); // write 16 bits

void xpcOutpB(uint8_T port, uint8_T value); // write a byte

The port address is the value returned in the BaseAddress array.

Memory-Mapped Space
For registers in memory-mapped space, access them by dereferencing
through a pointer that contains the virtual address returned by the
xpcReserveMemoryRegion function. Because modern compilers have
aggressive optimizers, you must declare the pointer to be volatile. Doing
so ensures that the compiler does not optimize out reads and writes using
that pointer. The following pseudocode illustrates this using two methods:
structure and array.

6-7

6 Custom xPC Target™ Driver Notes

• Structure

struct bdregs {
volatile int reg1;
volatile int reg2;
etc.

};

struct bdregs *regs = pciInfo.VirtualAddress[1];

regs->reg1 = 0x1234; // Sets reg1 to that value
regs->reg2 = 0x56789abc;
etc.

If your hardware uses registers with different lengths, it might be easier to
use the structure method.

• Array

#define REG1 0
#define REG2 1
etc.

volatile int *aregs = pciInfo.VirtualAddress[1];

aregs[REG1] = 0x1234;
aregs[REG2] = 0x56789abc;

6-8

7

Creating Custom Drivers
Using the xPC Target
Driver Authoring Tool

• “xPC Target Driver Authoring Tool” on page 7-2

• “Generating Custom Driver Templates” on page 7-4

7 Creating Custom Drivers Using the xPC Target™ Driver Authoring Tool

xPC Target Driver Authoring Tool
xPC Target Driver Authoring Tool helps you create templates for simple
custom device drivers. A simple custom device driver is one that does not
perform DMA or interrupt processing. The xPC Target Driver Authoring Tool
is not useful for these more complicated applications.

Based on the inputs you provide to xPC Target Driver Authoring Tool, it can
create a number of files, including the following. Of these files, you need to edit
only the source C code file. You can also optionally edit the block mask file.

File Description

driver_name.c Template for the source C code for driver. You
need to enter your C code.

driver_name.h Header file for driver.
sfcn_driver_name.c S-function file for driver. This file contains

S-function callback methods and options for
the driver.

sfcn_driver_name.tlc Optional. Real-Time Workshop TLC code
generation file. You typically need a .tlc file
only if you want to inline your custom driver.
See “Inlining xPC Target Drivers” on page
1-10 for further information. The xPC Target
Driver Authoring Tool creates this file for you
whether or not you want to inline the driver.

driver_block_name.mdl Optional. Block mask model file for driver.
After the xPC Target Driver Authoring Tool
creates the supporting files, it creates the
block mask for the driver and displays it in the
Simulink model window. The tool creates this
file only if you select theMEX C file check box.

sfcn_driver_-
name.mexw32

Optional. If you requested the creation of a C
MEX file, the tool generates one for you.

7-2

xPC Target™ Driver Authoring Tool

Note The xPC Target Driver Authoring Tool creates custom driver templates
using the Legacy Code Tool (LCT). You do not need any prior knowledge of the
Legacy Code Tool to use the xPC Target Driver Authoring Tool. If you want to
read about the Legacy Code Tool, see “Integrating Existing C Functions into
Simulink Models with the Legacy Code Tool” in Writing S-Functions.

7-3

7 Creating Custom Drivers Using the xPC Target™ Driver Authoring Tool

Generating Custom Driver Templates

In this section...

“Using the xPC Target Driver Authoring Tool” on page 7-4
“Setting Up Driver Variables” on page 7-4
“Saving the Configuration” on page 7-7
“Reloading the Configuration” on page 7-8
“Creating the C File Template” on page 7-8
“Creating a C MEX File for the Driver” on page 7-8
“Customizing the Device Driver Mask” on page 7-9

Using the xPC Target Driver Authoring Tool
The prerequisites for creating a custom xPC Target device driver using the
xPC Target Driver Authoring Tool are the same as those for creating a device
driver manually. See “Expected Background” on page 1-3 and “Before You
Start” on page 1-8 for further information.

The following sections assume that you have identified the following
component specifications for the driver. See “Before You Start” on page 1-8
for guidelines for the following driver components, including their data type
and size:

Input ports
Output ports
Parameters
Work variables

Setting Up Driver Variables

1 In the MATLAB Command Window, change directory to the one in which
you want to save the driver code.

2 Start xPC Target Driver Authoring Tool. Type

xpcdrivertool

7-4

Generating Custom Driver Templates

The xPC Target Driver Authoring Tool is displayed.

3 In the Main tab, enter:

• Driver name — The name for your driver. The tool will create supporting
files using this string as the prefix. For example, type testdriver.

• Sample time — Select one of the following:

– Mask parameter— If you want the block sample time to be settable
as a block dialog box parameter (Sample Time).

– Inherited — If you want the block to inherit its sample time from
a connected block. No Sample Time parameter is displayed in the
block dialog box.

4 If you have input ports for the block, click the Input Ports tab.

The Inport Ports tab is displayed.

5 Click the Add button. Enter your input port information in the following
fields. Repeat as necessary for your defined input ports.

• Variable— Enter the name of the input. For example, speed.

7-5

7 Creating Custom Drivers Using the xPC Target™ Driver Authoring Tool

• Size — Enter the maximum size number of storage locations to be
allocated for the parameter. If you want this number to be a variable one,
enter a value of 0. This setting means that you can pass an additional
function argument that contains the size into the start, output, and/or
terminate functions along with the port/parameter variable.

• Type— From the list, select the data type for the input port.

• Output— This check box is always selected. It ensures that the input
port value will be passed into the S-function mdlOutputs callback
method.

6 If you have output ports for the block, click the Output Ports tab.

The Output Ports tab is displayed.

7 Click the Add button. Enter your output port information in the following
fields. Repeat as necessary for your defined output ports.

• Variable— Enter the name of the output. For example, speed.

• Size — Enter the maximum size number of storage locations to be
allocated for the size.

• Type— From the list, select the data type for the output port.

• Output— This check box is always selected. It ensures that the output
port value will be passed into the S-function mdlOutputs callback
method.

8 If you have parameters for the block, click the Parameters tab.

The Parameters tab is displayed.

9 Click the Add button. Enter your parameter information in the following
fields. Repeat as necessary for your defined parameters.

• Variable— Enter the name of the parameter. For example, speed.

• Type— From the list, select the data type for the parameter.

• Size — Enter the maximum size number of storage locations to be
allocated for the parameter. If you want this number to be a variable
one, enter a value of 0. This means that you can pass an additional

7-6

Generating Custom Driver Templates

function argument that contains the size into the start, output and/or
terminate functions along with the port/parameter variable.

• Start — Select the check box if you want the parameter value to be
passed into the S-function mdlStart callback method.

• Output — Select the check box if you want the parameter value to be
passed into the S-function mdlOutputs callback method.

• Terminate— Select the check box if you want the parameter value to
be passed into the S-function mdlTerminate callback method.

10 If you have work variables to be shared between the start, output, and
terminate routines for the block, click the Work Variables tab.

The Work Variables tab is displayed.

11 Click the Add button. Enter your work variables information in the
following fields. Repeat as necessary for your defined parameters.

• Variable— Enter the name of the work variable. For example, speed.

• Type— From the list, select the data type for the work variable.

• Size— Enter the maximum size of the work variable.

• Start— Select the check box if you want the work variable value to be
passed into the S-function mdlStart callback method.

• Output— Select the check box if you want the work variable value to be
passed into the S-function mdlOutputs callback method.

• Terminate— Select the check box if you want the work variable value
to be passed into the S-function mdlTerminate callback method.

Saving the Configuration
The xPC Target Driver Authoring Tool allows you to save your configuration
session as a MAT-file.

1 In the xPC Target Driver Authoring Tool, click the Main tab.

2 Click Save settings.

The tool saves the testdriver.mat file in the current working directory.

7-7

7 Creating Custom Drivers Using the xPC Target™ Driver Authoring Tool

You can iteratively change the configuration and resave the MAT-file as often
as you like.

Reloading the Configuration
The xPC Target Driver Authoring Tool allows you to reload your configuration
session as a MAT-file.

1 In the xPC Target Driver Authoring Tool, click the Main tab.

2 Click Load settings.

The tool loads the testdriver.mat file into the tool.

Creating the C File Template
To generate a template for the driver C source code file:

1 In the xPC Target Driver Authoring Tool, click the Main tab.

2 Select Generate C file template.

3 Click the Build button.

The tool creates the following files:

• testdriver.c

• testdriver.h

• sfcn_testdriver.c

• sfcn_testdriver.tlc

4 With your favorite editor, open the testdriver.c file and edit it. This is the
source C code for your driver. The S-function code in sfcn_testdriver.c
will reference this C file.

Creating a C MEX File for the Driver
To create a C MEX file for the driver, you can use either the xPC Target
Driver Authoring Tool or the mex function.

7-8

Generating Custom Driver Templates

Note Use the xPC Target Driver Authoring Tool to build the C Mex file if
you have not edited the C source code file (testdriver.c). If you have edited
this file and want to keep those changes, do not use the xPC Target Driver
Authoring Tool to build the driver. Doing so overwrites your changes to the
C source code. Instead, use the mex function (see “Creating a C MEX File
Using the mex Function” on page 7-9).

Creating a C MEX File Using the xPC Target Authoring Tool

1 In the xPC Target Driver Authoring Tool, click the Main tab.

2 Select Generate block and mask.

3 Click the Build button.

The tool creates the file sfcn_testdriver.mexw32.

Creating a C MEX File Using the mex Function

1 In the MATLAB Command Window, change directory to the one that
contains the driver files.

2 Compile and link the MEX-file. For example:

mex testdriver.c

This function creates the sfcn_testdriver.win32mex file.

Customizing the Device Driver Mask
The xPC Target Driver Authoring Tool creates a mask for the device driver.
You can customize this block mask as described in Chapter 4, “Masking
Drivers”. If you customize the mask, do not use the xPC Target Driver
Authoring Tool again to build your files. Doing so overwrites the driver files
and you will lose your mask customizations.

7-9

7 Creating Custom Drivers Using the xPC Target™ Driver Authoring Tool

7-10

8

I/O Structures — By
Category

xpcPCIDevice Type definition for PCI configuration
space structure

xpcTime Type definition of time structure

8 I/O Structures — By Category

8-2

9

I/O Structures —
Alphabetical List

xpcPCIDevice

Purpose Type definition for PCI configuration space structure

Prototype typedef struct xpcPCIDeviceStruct{
uint32_T BaseAddress[6];
uint32_T VirtAddress[6];
uint32_T Length[6];
uint16_T AddressSpaceIndicator[6];
uint16_T MemoryType[6];
uint16_T Prefetchable[6];
uint16_T InterruptLine;
uint16_T VendorId;
uint16_T DeviceId;
uint16_T SubDeviceId;
uint16_T SubVendorId;

} xpcPCIDevice;

Header
File

xpctarget.h

Members BaseAddress Physical base addresses that are assigned
by the PCI BIOS.

VirtAddress Virtual address of device. As
necessary, enter the return value
from xpcReserveMemoryRegion. See
“Description” on page 9-3 for details.

Length Length of each region. This value contains
the number of bytes that the board segment
responds to during the configuration space
read. This value might be larger than the
space required by the registers as specified
in the hardware manufacturer manual.

9-2

xpcPCIDevice

Indicates whether the board is I/O port
mapped or memory-mapped. Values are
one of the following. Verify this value in
the hardware manufacturer manual for
accuracy.
0 Memory-mapped

AddressSpaceIndicator

1 I/O port mapped
Type of memory. This field is relevant only
if AddressSpaceIndicator has a value of 0.
0 Located anywhere in the 32-bit

address space
1 Located below 1 MB

MemoryType

2 Located anywhere in the 64-bit
address space

Prefetchable Indicates whether or not the memory is
prefetchable. Typically, this field is not
required.

InterruptLine Contains the assigned interrupt line,
values between 0 and 15. The BIOS assigns
this value. You need this value only if you
are writing an interrupt driver.

VendorId Contains vendor ID.
DeviceId Contains device ID.
SubDeviceId Contains subdevice ID.
SubVendorId Contains subvendor ID.

Description The xpcPCIDevice structure defines the PCI configuration space
structure. The following are additional notes on the BaseAddress field:

• The PCI specification allows the definition of up to six different base
addresses (addressable regions). Most boards respond to one or two

9-3

xpcPCIDevice

of these addresses. Base addresses are filled in during the BIOS
plug and play initialization, before the xPC Target kernel starts to
execute. The hardware designer of the board decides how many
address spaces are defined and what they are used for. Many boards
use one address space to contain all of the registers for the board,
other boards separate functions into different address spaces. See
the board hardware manufacturer manual for this information.

• For memory-mapped segments, call the xpcReserveMemoryRegion
function to convert the physical address in BaseAddress to a virtual
address that is suitable for the CPU to read and write the segment.
You can then optionally save this address in the VirtAddress field.
You might want to save the address if you have several segments and
you want to pass them all to a board access library.

See Also xpcGetPCIDeviceInfo, xpcShowPCIDeviceInfo

9-4

xpcTime

Purpose Type definition of time structure

Prototype typedef struct xpcTime64Struct{
uint32_T NanoSecondsLo;
uint32_T NanoSecondsHi;

} xpcTime64;

typedef union xpcTimeStruct{
xpcTime64 U64;
//uint64_T NanoSeconds;

} xpcTime;

Header
File

xpctarget.h

Members U64.NanoSecondsLo Bottom 32 bits of 64-bit value.
U64.NanoSecondsHi Top 32 bits of 64-bit value.

Description The xPCTime structure holds the time value in nanoseconds, as a 64-bit
integer. NanoSecondsLo and NanoSecondsHi hold the lower and upper
32 bits, respectively. The xpcGetElapsedTime and xpcSubtractTime
functions use this structure to return time values.

See Also xpcGetElapsedTime, xpcSubtractTime

9-5

xpcTime

9-6

10

I/O Functions — By
Category

Port I/O (p. 10-2) I/O port input and output functions
for byte, word and double word
accesses

PCI Configuration Information
(p. 10-2)

Work with PCI devices through the
PCI configuration space

Physical Memory (p. 10-2) PCI memory management functions
Time (p. 10-2) xPC Target timing functions
Miscellaneous (p. 10-3) Miscellaneous functions

10 I/O Functions — By Category

Port I/O
xpcInpB, xpcInpW, xpcInpDW I/O port input functions for byte,

word, and double word accesses
xpcOutpB, xpcOutpW, xpcOutpDW I/O port output functions for byte,

word, and double word accesses

PCI Configuration Information
xpcGetPCIDeviceInfo Return information for PCI device
xpcShowPCIDeviceInfo Display contents of PCIDevice

structure

Physical Memory
xpcAllocPhysicalMemory Allocate physical memory
xpcFreePhysicalMemory Free physical memory
xpcReserveMemoryRegion Return virtual address that

corresponds to physical address and
mark region as readable/writable

Time
xpcGetElapsedTime Return time since system boot
xpcSubtractTime Return difference between two times

10-2

Miscellaneous

Miscellaneous
xpcBusyWait Wait for specified length of time in

seconds
xpcIsModelInit Return target application load state

10-3

10 I/O Functions — By Category

10-4

11

I/O Functions —
Alphabetical List

xpcAllocPhysicalMemory

Purpose Allocate physical memory

Prototype void *xpcAllocPhysicalMemory(uint32_T numBytes)

Header
File

xpctarget.h

Arguments numBytes Allocate specified number of bytes of memory.

Description The xpcAllocPhysicalMemory function allocates the requested bytes
of physical memory. Functions such as malloc only return virtual
memory.

xPCAllocPhysicalMemory allocates physical memory, where physical
memory is the same as the virtual address. Use this function only when
absolutely necessary, such as for DMA transfers.

See Also xpcFreePhysicalMemory

11-2

xpcBusyWait

Purpose Wait for specified length of time in seconds

Prototype void xpcBusyWait(real_T seconds)

Header
File

xpctarget.h

Arguments seconds Length of time to wait, in seconds.

Description The xpcBusyWait function waits for the specified number of seconds.
This function blocks this specified amount of time.

11-3

xpcFreePhysicalMemory

Purpose Free physical memory

Prototype void xpcFreePhysicalMemory(const void *physical)

Header
File

xpctarget.h

Arguments physical Free specified memory.

Description The xpcFreePhysicalMemory function frees the specified section of
physical memory.

See Also xpcAllocPhysicalMemory

11-4

xpcGetElapsedTime

Purpose Return time since system boot

Prototype real_T xpcGetElapsedTime(xpcTime *upTime)

Arguments upTime Pointer to an xpcTime structure.

Description The xpcGetElapsedTime function returns the time since the system
was last booted, in seconds. You can get this time in nanoseconds by
passing a pointer to a previously allocated xpcTime structure. You can
pass a NULL pointer for the upTime argument if you do not want the
time in nanoseconds.

See Also xpcTime, xpcSubtractTime

11-5

xpcGetPCIDeviceInfo

Purpose Return information for PCI device

Prototype int32_T xpcGetPCIDeviceInfo (uint16_T vendorId, uint16_T
deviceId, uint16_T subVendorId, uint16_T subDeviceId,
uint16_T bus, uint16_T slot, xpcPCIDevice *pciInfo);

Arguments vendorId Enter the vendor ID.
deviceId Enter the device ID.
subVendorId Enter the subvendor ID.
subDeviceId Enter the subdevice ID.
bus Enter the device bus.
slot Enter the slot that contains the device.
pciInfo Pointer to the PciDevice structure.

Header
File

xpctarget.h

Description The xpcGetPCIDeviceInfo function fills the structure, pciInfo, with
the PCI configuration information for the specified PCI device. This
information includes base address, registers, IRQ, and so forth from
the PCI BIOS. It uses the vendor and device IDs and, optionally, the
subvendor and subdevice IDs to search for the board.

If you specify XPC_NO_SUB for the subvendor or subdevice ID, or
XPC_NO_BUS_SLOT for the device slot, the function will search through
the PCI BIOS and return the first board that it finds with the specified
IDs. If you specify a bus and a slot value, the function will successfully
return only a board with the matching IDs found at that bus or slot.

You must supply valid vendor and device IDs. If you specify values
other than XPC_NO_SUB for subvendor and subdevice IDs, the function
will match the board using all four ID parameters. To find a board

11-6

xpcGetPCIDeviceInfo

using only vendor ID and device ID, use XPC_NO_SUB for subDeviceId
and XPC_NO_SUB for subVendorId.

This function returns 0 upon success. Otherwise, it returns a nonzero
value.

See Also xpcPCIDevice xpcShowPCIDeviceInfo

11-7

xpcInpB, xpcInpW, xpcInpDW

Purpose I/O port input functions for byte, word, and double word accesses

Prototype uint8_T xpcInpB(uint16_T port)
uint16_T xpcInpW(uint16_T port)
uint32_T xpcInpDW(uint16_T port)

Arguments port Enter the port value

Header
File

xpctarget.h

Description These functions input data from the I/O port space. Use xpcInpB for
byte access (8-bit), xpcInpW for word accesses (16-bit), and xpcInpDW
for double word accesses (32-bit).

See Also xpcOutpB, xpcOutpW, xpcOutpDW

11-8

xpcIsModelInit

Purpose Return target application load state

Prototype boolean_T xpcIsModelInit(void)

Header
File

xpctarget.h

Arguments none

Description The xpcIsModelInit function returns a Boolean value to indicate the
target application load state:

• true — While target application is loading

• false — Start of target application execution

You can call this function from the mdlStart and mdlTerminate
callbacks.

See Also “mdlStart and mdlTerminate Considerations” on page 6-4

11-9

xpcOutpB, xpcOutpW, xpcOutpDW

Purpose I/O port output functions for byte, word, and double word accesses

Prototype void xpcOutpB(uint16_T port, uint8_T value)
void xpcOutpW(uint16_T port, uint16_T value)
void xpcOutpDW(uint16_T port, uint32_T value)

Arguments port Enter the port value
value Contains the output value

Header
File

xpctarget.h

Description These functions output data to the I/O port space. Use xpcOutpB for
byte access (8-bit), xpcOutpW for word accesses (16-bit), and xpcOutpDW
for double word (16-bit) accesses.

See Also xpcInpB, xpcInpW, xpcInpDW

11-10

xpcReserveMemoryRegion

Purpose Return virtual address that corresponds to physical address and mark
region as readable/writable

Prototype void * xpcReserveMemoryRegion(const void
*physical, uint32_T
numBytes, uint32_T access)

Arguments physical Starting address of the memory region to be
reserved. This is typically obtained from one of the
PCI base address registers.

numBytes Size of region to be located, in bytes.
access Type of access, limited to XPC_RT_PG_USERREADWRITE

(read/write).

Return The xpcReserveMemoryRegion function returns the virtual address to
use to access the physical address.

Description This function reserves a region of physical memory (as returned by the
PCI BIOS) and returns the corresponding virtual address. You can later
use the virtual address for pointer addressing.

It is safe to call this function multiple times with the same address. A
call to this function with an already reserved area returns the same
virtual address.

The needed size differs from board to board. You can obtain the
correct number of bytes from the register programming manual of the
particular board. This size is typically a multiple of a page (4096 bytes).

11-11

xpcShowPCIDeviceInfo

Purpose Display contents of PCIDevice structure

Prototype void xpcShowPCIDeviceInfo(xpcPCIDevice *pciInfo)

Arguments pciInfo Pointer to the xpcPCIDevice structure.

Description This debugging function displays the contents of the PCIDevice
structure pointed to by pciInfo. You can use this function with
the xpcGetPCIDeviceInfo function to display the contents of the
xpcPCIDevice structure.

Note Remove this function from the driver before deploying.

See Also xpcGetPCIDeviceInfo

11-12

xpcSubtractTime

Purpose Return difference between two times

Prototype real_T xpcSubtractTime(xpcTime *time,
const xpcTime *time2, const xpcTime *time1)

Arguments time Pointer to an xpcTime structure.
time2 Enter the time to subtract.
time1 Enter the time to subtract from.

Description xpcSubtractTime returns the difference between time1 and time2
(time2 - time1), in seconds. You can get this time in nanoseconds by
passing a pointer to a previously allocated xpcTime structure. You can
pass a NULL pointer for the time argument if you do not want the
time in nanoseconds.

See Also xpcTime, xpcGetElapsedTime

11-13

	toc
	Customizing xPC Target Drivers
	Introduction
	xPC Target Drivers
	When to Write Your Own Drivers
	Restrictions on Customizing xPC Target Drivers
	Expected Background
	Resources for Customizing xPC Target Drivers
	References
	MathWorks Consulting
	Source Code
	xPC Target Exported Functions
	Third-Party Directory

	What Makes Up an xPC Target Driver?

	Before You Start
	Introduction
	Driver Types
	Bus Types and Register Access
	Register Access
	Inlining xPC Target Drivers

	Creating a Custom Driver
	Debugging Notes

	PCI Drivers
	PCI Bus Considerations
	Introduction
	PCI Configuration Space API
	PCI Device Information
	Passing Slot Information from the Block Mask to Its Driver

	Memory-Mapped Accesses
	I/O Port Accesses

	Sample PCI Device Driver

	ISA and PC/104 Drivers
	ISA and PC/104 Bus Considerations
	Introduction
	I/O Mapped
	Memory Mapped
	Reserved Space on the Target PC

	Masking Drivers
	Creating Driver Subsystem Masks
	Driver Mask Guidelines
	Cross-Block Checking
	When You Are Done
	Sample Driver Mask

	Interrupt Support
	xPC Target Interrupts
	Introduction
	Interrupt Processing in the xPC Target Environment

	Adding Interrupt Support
	Introduction
	Guidelines for Creating Interrupt Functions
	Filling in the Driver board Structure

	Hook Function Prototypes — Alphabetical List

	Custom xPC Target Driver Notes
	S-Function Guidelines
	mdlStart and mdlTerminate Considerations
	DMA Considerations
	Passing Parameters
	Accessing Registers
	I/O Space
	Memory-Mapped Space

	Creating Custom Drivers Using the xPC Target Driver Authoring To
	xPC Target Driver Authoring Tool
	Generating Custom Driver Templates
	Using the xPC Target Driver Authoring Tool
	Setting Up Driver Variables
	Saving the Configuration
	Reloading the Configuration
	Creating the C File Template
	Creating a C MEX File for the Driver
	Creating a C MEX File Using the xPC Target Authoring Tool
	Creating a C MEX File Using the mex Function

	Customizing the Device Driver Mask

	I/O Structures — By Category
	I/O Structures — Alphabetical List
	I/O Functions — By Category
	Port I/O
	PCI Configuration Information
	Physical Memory
	Time
	Miscellaneous

	I/O Functions — Alphabetical List

